
IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 1

Multivariate Time Series Modeling and Forecasting
with Parallelized Convolution and Decomposed

Sparse-Transformer
Shusen Ma, Yun-Bo Zhao*, Senior Member, IEEE, Yu Kang, Senior Member, IEEE, and Peng Bai

Abstract—Many real-world scenarios require accurate predic-
tions of time series, especially in the case of long sequence time-
series forecasting (LSTF), such as predicting traffic flow and
electricity consumption. However, existing time series prediction
models encounter certain limitations. Firstly, they struggle with
mapping the multidimensional information present in each time
step to high dimensions, resulting in information coupling and
increased prediction difficulty. Secondly, these models fail to ef-
fectively decompose the intertwined temporal patterns within the
time series, which hinders their ability to learn more predictable
features. To overcome these challenges, we propose a novel end-
to-end LSTF model with parallelized convolution and decom-
posed sparse-Transformer (PCDformer). PCDformer achieves the
decoupling of input sequences by parallelizing the convolutional
layers, enabling the simultaneous processing of different variables
within the input sequence. To decompose distinct temporal pat-
terns, PCDformer incorporates a temporal decomposition module
within the encoder-decoder structure, effectively separating the
input sequence into predictable seasonal and trend components.
Additionally, to capture the correlation between variables and
mitigate the impact of irrelevant information, PCDformer utilizes
a sparse self-attention mechanism. Extensive experimentation
conducted on five diverse datasets demonstrates the superior
performance of PCDformer in LSTF tasks compared to existing
approaches, particularly outperforming encoder-decoder-based
models.

Impact Statement—LSTF is a popular topic in time-series
forecasting, which can predict the values of variables over a
long period. It enables us to make decisions according to the
forecasting results, which plays a significant role in various fields.
However, existing models struggle with information coupling and
intertwined temporal patterns, which might undermine predic-
tion accuracy. This article proposes a new end-to-end model,
PCDformer, which simultaneously considers the above problems
and provides a new idea to improve the accuracy of time-series
forecasting. PCDformer provides a separate convolutional layer
for each variable to learn temporal dependence, avoiding the

This work was supported by the National Natural Science Foundation of
China (No. 62173317) and the Key Research and Development Program of
Anhui (No. 202104a05020064).

Shusen Ma is with the Institute of Advanced Technology, USTC, Shushan
District, Hefei, 230031, Anhui, China.

Yun-Bo Zhao* (corresponding author) is with the Institute of Advanced
Technology, USTC, Shushan District, Hefei, 230031, Anhui, China, the
Department of Automation, USTC, Shushan District, Hefei, 230031, Anhui,
China, and also with the Institute of Artificial Intelligence, Hefei Comprehen-
sive National Science Center, Shushan District, Hefei, 230031, Anhui, China
(e-mail: ybzhao@ustc.edu.cn).

Yu Kang is with the Institute of Advanced Technology, USTC, Shushan
District, Hefei, 230031, Anhui, China, the Department of Automation, USTC,
Shushan District, Hefei, 230031, Anhui, China, and also with the Institute of
Artificial Intelligence, Hefei Comprehensive National Science Center, Shushan
District, Hefei, 230031, Anhui, China.

Peng Bai is with the Department of Automation, USTC, Shushan District,
Hefei, 230031, Anhui, China.

impact of information coupling. Besides, PCDformer deploys
series decomposition and sparse self-attention to the canonical
Transformer to disentangle series and extract the correlation
between variables. The experimental results illustrate the supe-
riority of the proposed model compared with the state-of-the-art
methods, covering traffic, energy, and weather prediction.

Index Terms—Decomposed sparse-Transformer, long sequence
time-series forecasting, parallelized convolution

I. INTRODUCTION

T IME series forecasting, especially the long sequence
time-series forecasting (LSTF), is extensively utilized

for predicting energy consumption, economic fluctuations,
weather changes, and more [1]–[7]. It enables better long-
term planning, which can minimize risks or maximize benefits.
Currently, time series forecasting methods can be broadly
categorized into two types: supervised end-to-end learning
methods [8]–[12] and representation learning methods [13]–
[17]. The end-to-end learning method involves the extraction
of features through the stacking of various nonlinear layers.
These extracted features are then fed into a regression layer
for prediction [9]. Transformer-based models [8], [9], [12],
[18]–[21] have shown promising results within this category.
Representation learning methods [13]–[17], on the other hand,
primarily focus on learning feature representations from ob-
served data to improve prediction performance. These methods
aim to capture meaningful patterns and relationships within the
data, leading to more accurate forecasts.

However, multivariate long-term forecasting tasks still
present certain challenges. Firstly, it is not proper to regard
the multivariate information of each time step as a token and
then map it to a high-dimensional space by linear layer. It
is well known that each time step contains diverse variables’
state information and each variable has its unique character-
istics. If we adopt the above mapping approach, models may
overlook learning these characteristics, and irrelevant variables
may also interfere with the prediction of the target variable,
causing information coupling and making the model prone to
overfitting and more sensitive to noise in the long sequence.
Secondly, there are different entangled temporal patterns in the
time series [14], [22], [23], such as trend part and seasonal
part. Moreover, each variable has different temporal patterns,
which makes it difficult to extract the temporal dependence
between different variables and the temporal features of each
variable directly from the complex long series. Additionally,
the presence of irrelevant temporal dependence information

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2024.3410934

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 22,2024 at 23:48:29 UTC from IEEE Xplore. Restrictions apply.

2 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

between variables can have a detrimental impact on the
accuracy of predictions.

To solve the above problems, we propose a new end-to-
end LSTF model with parallelized convolution and decom-
posed sparse-Transformer (PCDformer). For the first problem,
PCDformer tries to decouple multivariate time series [24] by
parallelizing different variables of the input sequence [25].
Then it extracts the temporal dependencies of the variables
separately [25] through the proposed convolutional module
that consists of parallelized convolution layers. To extract
more potential temporal dependencies, we convert the one-
dimensional input sequence into a two-dimensional image-like
data [7] and extract the temporal features by the proposed M-
inception layer based on Inception [26]. For the second prob-
lem, PCDformer embeds series decomposition modules in the
encoder-decoder structure to disentangle temporal patterns and
then improves self-attention to sparse self-attention because
of the redundant information [27]. The series decomposition
module can decompose complex series into trend and seasonal
parts [22] so that the model can learn more predictable fea-
tures. Considering the negative interaction between variables,
we propose sparse self-attention to eliminate the impact of
irrelevant feature information on the prediction of the target
variable and reduce the computation of the model. Not all
time series are predictable, so this article focuses on data with
relatively obvious trends and seasonal characteristics. PCD-
former achieves state-of-the-art accuracy on multiple datasets.
The main contributions of this work are summarized below:

• A new end-to-end model called PCDformer is proposed
for LSTF tasks, which outperforms currently state-of-the-
art methods on five datasets, covering energy, traffic, and
weather.

• We parallelize the input sequences of different vari-
ables and efficiently extract the corresponding temporal
dependencies through the proposed parallel processing
layer, which can reduce the difficulty of temporal feature
extraction caused by information coupling.

• A sparse self-attention mechanism and series decomposi-
tion modules are applied to the canonical Transformer to
extract disentangled temporal patterns. The sparse self-
attention mechanism enables the PCDformer to focus on
the most contributive features. The series decomposition
module could disentangle the temporal patterns of the
input series, making the model learn useful temporal
features.

II. RELATED WORK

With the increasing adoption of LSTF in real-world sce-
narios [28]–[30], there has been a surge in the development
of diverse models tailored for LSTF tasks. Conventional fore-
casting techniques like autoregressive [31] and autoregressive
integrated moving average [32] models are primarily utilized
for straightforward forecasting tasks involving univariate data,
lacking the capability to effectively handle complex multi-
variate data. Due to the development of deep learning and
the improvement of computing power, a large number of
models based on deep learning are used in various time series

prediction tasks, although they may be vulnerable to imper-
ceptible perturbations [33]. The earliest models were based
on the internal memory states of recurrent neural networks
(RNNs) to remember dependencies between different time
steps. However, due to the problem of vanishing gradients
or explosions, RNNs-based models [34] cannot remember the
temporal dependence of long-term sequences. To improve this
problem, variants such as gated recurrent units [34] and long
short-term memory [35] have been proposed. These variants
enhance the model’s ability to process long sequence inputs by
adding gating units to let the model selectively memorize and
forget information. VAE-GRU [11] utilizes the strengths of
RNNs and Stochastic Gradient Variational Bayes, which can
take advantage of the unlabeled data to promote supervised
learning of RNNs. With the advent of convolutional neural
networks (CNNs), many researchers have applied them to
extract short-term temporal dependencies of series and local
correlations between variables. TCN [10] introduces a new
convolutional structure based on CNNs, which increases the
receptive fields of the canonical convolution so that the long-
term dependence of the series can be better captured.

Since the self-attention mechanism in the Transformer [36]
learns global information well, many Transformer-based mod-
els are applied to the LSTF tasks. Here is a summary of late
typical Transformer-based models. Reformer [18] substitutes
locality-sensitive hashing attention for dot-product attention,
which improves the efficiency of the Transformer. LogTrans
[19] proposes convolutional self-attention with LogSparse
design, making local context better incorporated into the
attention mechanism and reducing space complexity. Informer
[9] puts forward ProbSparse self-attention mechanism and
self-attention distilling to extract the most vital keys and
decrease the counting amount. Autoformer [8] proposes the
decomposition architecture to decompose more predictable
components from complex temporal patterns and the auto-
correlation mechanism to implement series-wise connections.
Pyraformer [20] introduces the pyramidal attention module
in which inter-scale tree architecture extracts diverse resolu-
tions’ features and intra-scale neighboring connections cap-
ture various ranges’ temporal dependencies. FEDformer [21]
reduces the distribution difference between input and output
by seasonal-trend decomposition and applies an attention
mechanism in the frequency domain to increase robustness to
noise. CLformer [12] deploys dilated convolutional networks
to extract temporal patterns and proposes a local group auto-
correlation mechanism to capture the dependencies at multiple
scales.

Besides supervised learning, self-supervised learning has
also been demonstrated to be efficient for downstream tasks
by learning useful representations. In the time-series repre-
sentations domain, there are many relevant works. TNC [16]
utilizes the local smoothness of a signal’s generative process
to define neighborhoods and learns time series representations
with a debiased contrastive objective. In a hierarchical way
over augmented context views, TS2Vec [15] fulfills contrastive
learning and enables a robust contextual representation for
each timestamp. CoST [13] utilizes inductive biases within
the model to obtain disentangled seasonal and trend feature

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2024.3410934

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 22,2024 at 23:48:29 UTC from IEEE Xplore. Restrictions apply.

MA et al.: MULTIVARIATE TIME SERIES MODELING AND FORECASTING 3

VQ K

M-inception
M-inception

�� �� �� ⋯ ��−� ��

Inputs: Xenc

Dim-
Trans

Convolutional
module Reshape Linear

Embedding

Sparse
Multi-Head
Attention

Norm

Feed
Forward

Series
Decomposition

Norm

�� �� �� ⋯ ��−� ��

� � � � � �

Embedding

Sparse
Multi-Head
Attention

Norm

Multi-Head
Attention

Norm

Feed
Forward

Norm

�� �� �� ⋯ ��−� ��

Inputs: Xdec

Mean

Linear

Fully Connected Layer

Prediction

Transpose

� ×

� ×

M-inception

Convolutional module

Inputs: Xenc

Concatenate

Parallel processing layer

Trend
module

Encoder

Decoder

n

Series
Decomposition

Series
Decomposition

Series
Decomposition

Series
Decomposition

Series
Decomposition

Q

K

V

KQ V

Fig. 1. PCDformer architecture.

representations. LaST [14] combines representation learning
and series decomposition to learn the disentangled seasonal
and trend characterization of the long sequence. SimTS [17], a
contrastive representation learning method, employs a siamese
structure and a simple convolutional encoder to learn features
and does not depend on negative pairs. ACST [37] generates
samples by an improved cycle generative adversarial data aug-
mentation method and cuts down on the impact of noise and
feature variable weights through the gated residual networks
and a noise decomposition module.

III. PRELIMINARY

Given a specific dataset, expressed as X ∈ Rl×n where
l represents the length of the total sequence and n denotes
the number of variables, and a look-back window of fixed
length L. At the moment t, the task of LSTF is to forecast
X̃t+1:t+τ = {xt+1, ...,xt+τ} taking the historical observation
Xt−L+1:t = {xt−L+1, ...,xt} into account, where τ indicates
the length of the prediction, called horizon, and xt ∈ Rn.

When training and inference, the existing study usually
takes each time step as a token, while entering consecutive
L tokens, and then extracts the temporal dependency between
each token. In contrast, this paper regards the values of
each variable for consecutive L moments as a token, first
independently learns the temporal dependence of each token,

then extracts the correlation between each token and eliminates
redundant feature information. The specific input and output
descriptions of the model have been given in Section IV-A.

IV. METHODOLOGY

We propose a PCDformer model, shown in Fig. 1, based on
Transformer and Informer’s generative style encoder-decoder
structure, mainly consisting of a parallel processing layer,
Encoder-Decoder, and trend module. The parallel processing
layer comprises a dimension transformation (Dim-Trans) layer,
a Convolutional module, a Reshape layer, and a Linear layer.
It is designed to capture diverse variables’ temporal features
independently. The Encoder mainly consists of the sparse
Multi-Head Attention and the Series Decomposition modules,
which can eliminate the impact of irrelevant information be-
tween variables and be conducive to the learning of predictable
features, such as the trend and season characteristics. The De-
coder is utilized to capture the relationship between historical
and future information, possessing similar components to the
Encoder. The design of the trend module is for the complete
learning of the trend part. In subsequent sections, we first
describe the input and output of the model, and then introduce
the details of these components.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2024.3410934

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 22,2024 at 23:48:29 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

A. The descriptions of the input and output

Currently, Transformer-based LSTF models employ the
mixed-channel approach for input [9]. In this method, the mul-
tivariate information at each time step of the input sequence
will be regarded as a token projected into a high-dimensional
space, mixing the multivariate information. For example, the
input X ∈ RL×n will be mapped to X̂ ∈ RL×dmodel after
passing the linear layer whose output dimension is dmodel.
However, this approach may cause information coupling be-
cause each element in X̂ is a fusion of features from all
variables, rendering the model vulnerable to interference from
irrelevant features and impacting the predictive accuracy of
the model. In contrast, this paper will adopt the parallelized-
channel input method, taking the information contained in each
variable of the input sequence as a separate token.

Specifically, the input to the parallel processing layer and
the trend module can be expressed as Xenc ∈ Rn×L. Unlike
Informer, the decoder input of PCDformer takes into account
all the observed historical information. It can be expressed
as Xdec ∈ Rn×(L+τ), where τ represents the length of the
prediction. Since we cannot know the future information in
advance, the position to be predicted is initialized to 0. For
example, the token inside the red dotted box in Fig. 1 can be
represented as Fig. 2. The sum of the output of the decoder and
the trend module, Y ∈ Rn×dmodel , becomes Ŷ ∈ Rn×τ after
passing the Fully Connected Layer. Ŷ then passes through
the Transpose layer, obtaining the final predicted value, Ỹ ∈
Rτ×n.

��−�+�
� ��−�+�

� ⋯ ��
� � � ⋯ �

��

�

�

Fig. 2. The structure of one token of the decoder input.

B. Parallel processing layer

Existing works often use convolution to extract temporal
features [38], [39], which cannot effectively perceive global
and long-term information because of the limited receptive
field. Inspired by the former work [7], we first insert the Dim-
Trans layer into the parallel processing layer to convert each
token of the input sequence into an image form. The process is
shown in Fig. 3, where the selection of P is shown as follows:

P =

{√
L,

√
L ∈ N∗

⌈
√
L⌉,

√
L /∈ N∗.

(1)

Then we extract the local and global features of each token
through two-dimensional convolution. Considering that too
deep a network can cause model overfitting or degradation,
we take the idea of the Inception network and establish a
module called M-inception, shown in Fig. 4, to extract the
temporal dependencies of each token. Each convolutional layer
of M-inception takes a different convolution kernel and the
number in parentheses indicates the number of convolution
kernels and the size of padding. The output results of different

convolutional layers are summed, and the feature fusion values
are averaged after the Relu activation function to obtain the
time series features contained in each token.

The convolutional module shown in Fig. 1 contains n par-
allelized M-inception layers. It denotes that different variables
will be handled independently by different M-inception mod-
ules, which can avoid the problem of information coupling.
The output of all M-inception layers will be concatenated. To
conform to the dimensional need of the subsequent algorithm,
we reshape the last two dimensions of the output result of
the convolutional module to one dimension and then map
it to high-dimensional space through the linear layer, whose
representation dimension can be expressed as dmodel.

�1
� �2

� … ��
�

… … … …

… … … …

��
� 0 … 0

�1
� �2

� �3
� … … ��

� P

Fig. 3. The illustration of the Dim-Trans layer. We take the token n
of Xenc ∈ Rn×L as an example to illustrate the process of dimension
transformation. When

√
L /∈ N∗, the remaining blank spaces are filled with

0.

Inputs

Average
Pooling

� × �
Conv1 (24,0)

� × �
Conv2 (24,0)

� × �
Conv3 (16,0)

� × �
Conv3 (16,0)

� × �
Conv4 (24,2)

� × �
Conv5 (24,1)

� × �
Conv5 (24,1)

Mean OutputsRelu

Fig. 4. The structure of the M-inception. The Mean layer indicates the
operation of averaging.

Specifically, the dimension format of the parallel processing
layer’s input, Rn×L, becomes Rn×P×P after going through
Dim-Trans layer. Then the convolutional module extracts
the temporal features while keeping the overall dimension
unchanged. The features’ dimension will be reshaped to Rn×L

by the Reshape layer and the reshaped result will be mapped
to Rn×dmodel by the linear layer.

C. Series decomposition

Due to the entangled temporal patterns in time series, it
is difficult to learn the temporal dependence of variables
directly from long input sequences. The survey by Cleveland
et al. [22] offers a significantly versatile and robust time-
series decomposition method, which could be deployed in the
LSTF task. Wu et al. [8] successfully embed the series de-
composition module into their model, making the model learn
more predictable features. Inspired by them, we try to embed
the series decomposition module into our Transformer-based
model, which can break down the input sequence into a trend
part and a seasonal part. The trend part represents the long-
term trend of the sequence, while the seasonal part represents
the periodic characteristics of the sequence. Specifically, we
use the moving average algorithm to calculate the long-term
trend of the input series, and then subtract the trend part from

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2024.3410934

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 22,2024 at 23:48:29 UTC from IEEE Xplore. Restrictions apply.

MA et al.: MULTIVARIATE TIME SERIES MODELING AND FORECASTING 5

the original input to obtain the seasonal part of the sequence.
The specific series decomposition process is as follows:

Xt = AvePool (Padding (Xseries))

Xs = Xseries −Xt,
(2)

where Xseries ∈ Rn×dmodel represents the input of the series
decomposition module. The purpose of Padding(·) is to keep
the length of the input series unchanged. AvePool(·) is 1D
average pooling whose pooling window size is expressed as
Kernel size. Xt and Xs represent the trend part and seasonal
part, respectively.

D. Sparse self-attention

The self-attention mechanism of the canonical Transformer
is defined based on the inputs (query, key, and value), which
conducts the scaled dot-product as shown in (3):

A = Softmax

(
QK⊤

√
dmodel

)
V, (3)

where the query Q = XWQ ∈ Rn×dmodel , the key K =
XWK ∈ Rn×dmodel , and the value V = XWV ∈ Rn×dmodel .
X is the input of the encoder-decoder and n is the number
of variables. To better illustrate the self-attention mechanism,
let qi represent the ith row of Q. The corresponding attention
output of the qi can be defined as:

Aqi = Softmax

(
qiK

⊤
√
dmodel

)
V. (4)

As we can see from (4), the qi can attend to all rows in K.
However, not all of the rows can give the qi useful information.
For a specific variable, it is usually impacted by some of the
other variables. Take the traffic flow prediction as an example:
when there is a traffic accident at a certain intersection, the
traffic flow at intersections that are nearby may increase; in
contrast, the traffic flow at intersections that are far away will
probably not be affected.

To eliminate the impact of the irrelevant elements of atten-
tion, we deploy sparse self-attention to replace the canonical
attention mechanism and the specific process can be seen in
Fig. 5. The corresponding sparse attention output of the qi can
be defined as:

Aqi = Softmax

(
Mask

(
Topk

(
qiK

⊤
√
dmodel

)))
V, (5)

where Topk(·) denotes selecting top k values, and Mask(·)
represents that the values unselected will be masked by
−∞, making the selected information get more attention. k
represents the number of variables that are the most relevant
to the target variable. Because the function of other variables
is auxiliary to the prediction of the target variable, it is enough
to take a few other variables into account. Therefore, for the
dataset having numerous other variables, we just list a small
range of k values. Taking the Electricity dataset as an example,
whose number of other variables is 320, we just take the value
of k from 1 to 10. However, for the dataset having a few
other variables, we take the number of total variables as the
maximum value of k. Taking the ETTh1 dataset as an example,

whose number of variables is 7, we take the value of k from
1 to 7 and then choose the optimal k that makes the model’s
error the smallest.

�� �� �� ⋯ ���

�� �� �� ⋯ ���

�� �� �� ⋯ ���

Query

Key

Value

��� ��� ��� ⋯ ����

��� ��� ��� ⋯ ����

⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯

���� ���� ���� ⋯ �����

Score Matrix

��� ��� ��� ⋯ ����

��� ��� ��� ⋯ ����

⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯

���� ���� ���� ⋯ �����

Select
Top

��� ��� ⋯

��� ⋯ ����

⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯

���� ⋯ �����

Mask

∞- ∞-
∞- ∞-

∞- ∞-

ɑ�� � ɑ�� ⋯ �

� ɑ�� � ⋯ ɑ���

⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯

ɑ��� � � ⋯ ɑ����

Softmax

��� � ��� ⋯ �

� ��� � ⋯ ����

⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯

���� � � ⋯ �����

Selected Matrix

k

Fig. 5. The specific process of sparse self-attention. In each row of the
Selected Matrix, the darker squares, whose total number is k, indicate that
the values are retained while others will be masked.

E. Encoder-Decoder and trend module

As shown in Fig. 1, the encoder layer of PCDformer is
primarily responsible for extracting the seasonal features of
the input sequence and applying them to cross attention that
can refine prediction results. Assuming there are N encoder
layers, the input and output of the ith encoder layer can
be summarized as Xi

enc = Encoder(Xi−1
enc). The specific

calculation process is as follows:

Si,1
enc, = SD

(
SMHA

(
Xi−1

enc

)
+Xi−1

enc

)
Si,2
enc, = SD

(
FF

(
Norm

(
Si,1
enc

))
+Norm

(
Si,1
enc

))
,

(6)

where represents the eliminated trend part, SD(·) denotes the
series decomposition operation, SMHA(·) is the Sparse Multi-
Head Attention layer and FF(·) expresses the Feed Forward
layer. Xi

enc = Norm(Si,2
enc), i ∈ {1, · · · , N} represents the

output of the ith encoder layer. In particular, X0
enc is the output

of the Embedding layer. Si,j
enc, j ∈ {1, 2} denotes the seasonal

part of the jth series decomposition module in the ith encoder
layer.

Similarly, assuming that PCDformer has M decoder lay-
ers, the output and input of the pth decoder layer can be
summarized as Xp

dec = Decoder(Xp−1
dec , XN

enc), where XN
enc

represents the output of the N th encoder layer. The specific
calculation process is as follows:

Sp,1
dec, T

p,1
dec = SD

(
SMHA

(
Xp−1

dec

)
+Xp−1

dec

)
Sp,2
dec, T

p,2
dec = SD

(
MHA

(
Norm

(
Sp,1
dec

)
, XN

enc

)
+Norm

(
Sp,1
dec

))
Sp,3
dec, T

p,3
dec = SD

(
FF

(
Norm

(
Sp,2
dec

))
+Norm

(
Sp,2
dec

))
,

(7)

where MHA(·) is the Multi-Head Attention layer. Xp
dec =

Norm(Sp,3
dec), p ∈ {1, · · · ,M} represents the output of the

pth decoder layer. In particular, X0
dec is the output of the

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2024.3410934

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 22,2024 at 23:48:29 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

Embedding layer. {Sp,q
dec, T

p,q
dec}, q ∈ {1, 2, 3} denote seasonal

part and trend part of the qth series decomposition module in
the pth decoder layer, respectively.

Since the encoder layer discards the trend part, to complete
the trend part of the sequence, we add the trend module in
Fig. 1 to learn the trend characteristics of the input sequence.
The specific calculation process is as follows:

T = FC (SD (Xenc) +Mean (Xenc))

+

M∑
p=1

(
T p,1
dec + T p,2

dec + T p,3
dec

)
,

(8)

where FC(·) is the linear layer.

V. EXPERIMENTS

A. Datasets and baselines

Experiments are mainly conducted on 5 common time series
datasets [8]: (1) ETT (ETTh1, ETTm1) dataset contains load
and oil temperature collected from electricity transformers,
which is recorded every 15 minutes between July 2016 and
July 2018; (2) Electricity dataset contains the hourly electricity
consumption of 321 customers from 2012 to 2014; (3) Traffic
dataset contains data collected from the California Department
of Transportation every hour, describing the road occupancy
rates measured by different sensors on San Francisco Bay area
freeways; (4) Weather dataset is collected every 10 minutes for
the 2020 whole year, containing 21 meteorological indicators.

PCDformer is mainly compared with the 16 latest state-
of-the-art methods from two categories: (1) representation
learning techniques, including SimTS, LaST, ACST, CoST,
TS2Vec, and TNC; (2) end-to-end forecasting models: (i)
Transformer-based models, including CLformer, FEDformer,
Autoformer, Pyraformer, Informer, Transformer, LogTrans and
Reformer; (ii) others: VAE-GRU and TCN.

B. Experimental details

Following the previous work, we set the LSTF into two cat-
egories, univariate and multivariate forecasting. In univariate
forecasting, the input and output of the model only consider a
specific variate. In multivariate forecasting, the model receives
and predicts all variables. For the split of the datasets, we
follow the standard method, dividing all datasets into training,
validation, and testing set by the ratio of 6:2:2. Our model is
trained by L2 loss and uses the ADAM optimizer to calculate
and update the parameters of the network. The total number
of the training epochs is 10 with suitable early stopping.
PCDformer consists of 2 Encoder layers and 1 Decoder layer.
All experiments are implemented in PyTorch and conducted
on a single NVIDIA GeForce RTX 2080ti GPU. Algorithms 1
and 2 illustrate the learning algorithm of PCDformer and the
steps of forecasting calculation, respectively. Mean Absolute
Errors (MAE) and Mean Squared Errors (MSE) are used to

evaluate the performance of all models, shown as follows:

MAE =
1

τ

t0+τ−1∑
i=t0

|x̂i − xi|

MSE =
1

τ

t0+τ−1∑
i=t0

(x̂i − xi)
2
,

(9)

where x̂i denotes the prediction value of the model, xi rep-
resents the ground-truth, and τ is the length of the prediction
steps.

TABLE I
THE OVERALL INFORMATION OF THE FIVE DATASETS.

Datasets ETTh1 ETTm1 Traffic Electricity Weather
Variants 7 7 862 321 21

Timesteps 17,420 69,680 17,544 26,304 52,696
Granularity 1hour 15min 1hour 1hour 10min
Task type Multi-step Multi-step Multi-step Multi-step Multi-step

Data partition Training/Validation/Testing: 6/2/2

C. Results and analyses

The results of the long-term time series forecasting of all
methods on five datasets are shown in Table II, Table IV,
and Table VI, which indicate the performance of univariate
forecasting and multivariate forecasting for various time steps
of future. Table III, Table V, and Table VII represent the
corresponding hype-parameters.

Algorithm 1 The learning algorithm of PCDformer for LSTF.
Input:

1: data: the dataset;
2: L: the input length of PCDformer;
3: n: the number of total variables;
4: bs: the batch size;
5: lr: the learning rate;
6: loss(·): the L2 loss function;
7: f(·): the initialized PCDformer with θ;
8: epochs: the number of training epochs;
9: g: the decay rate of the learning rate;

Output: the optimal model parameters θ;
1: for i in epochs do:
2: for each batch (Xenc ∈ Rbs×n×L,Xdec ∈

Rbs×n×(L+τ);Y ∈ Rbs×τ×n) from data do:
3: compute Ŷ = f(Xenc ∈ Rbs×n×L,Xdec ∈

Rbs×n×(L+τ); θ)
4: compute loss value Loss = loss(Ŷ , Y)
5: update the parameters of PCDformer according to

gradients and lr
6: end for
7: adjust learning rate: lr = lr × g
8: end for

Univariate Time-series Forecasting: From Table II, we
can observe that: (1) The proposed model PCDformer
achieves better performance overall compared with the
most advanced representation learning baseline LaST on

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2024.3410934

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 22,2024 at 23:48:29 UTC from IEEE Xplore. Restrictions apply.

MA et al.: MULTIVARIATE TIME SERIES MODELING AND FORECASTING 7

Algorithm 2 The steps of forecasting calculation of PCD-
former for LSTF.
Input:

1: data: the dataset;
2: Xenc ∈ Rn×L: the input for parallel processing layer and

trend module;
3: Xdec ∈ Rn×(L+τ): the input for the embedding layer of

Decoder;
4: ppl(·): the parallel processing layer with parameters θppl;
5: Enc(·): the Encoder with parameters θenc;
6: Dec(·): the Decoder with parameters θdec;
7: Tm(·): the trend module with parameters θtm;
8: fcl(·): the Fully Connected Layer with parameters θfcl;
9: T (·): the Transpose operation;

Output: the forecasting values Ŷ ;
1: for each batch (Xenc,Xdec) from data do:
2: feed Xenc into parallel processing layer: outppl =

ppl(Xenc; θppl)
3: compute Encoder output: outenc =

Enc(outembed
ppl ; θenc)

4: feed Xdec into Embedding layer: outembed =
Embedding(Xdec)

5: compute Decoder output: outdec =
Dec(outembed, outenc; θdec)

6: feed Xenc into trend module layer: outtm =
Tm(Xenc; θtm)

7: sum the value of extracted feature: outsum = outdec+
outtm

8: compute the final forecasting results: Ŷ =
T (fcl(outsum; θfcl))

9: end for

three real-world datasets (average MSE: 0.121→0.117, av-
erage MAE: 0.236→0.235). Especially, under the input-201-
predict-720 and input-201-predict-672 settings for ETTh1
and ETTm1, PCDformer achieves 23.9% (0.138→0.105)
and 18.0% (0.100→0.082) MSE reduction respectively. (2)
When compared to models of the same category, end-to-
end learning, PCDformer achieves state-of-the-art perfor-
mance in all prediction horizon settings except for the Hori-
zon=24 of VAE-GRU in ETTm1. Overall, PCDformer yields a
41.8% (0.201→0.117) averaged MSE reduction and a 23.2%
(0.306→0.235) averaged MAE reduction.

Multivariate Time-series Forecasting: Under the multi-
variate settings, PCDformer achieves the following perfor-
mance improvement: (1) Compared with the most advanced
representation baseline LaST, our model PCDformer achieves
better performance overall on three real-world datasets (av-
erage MSE: 0.334→0.313, average MAE: 0.369→0.364). In
particular, for the input-201-predict-336 of ETTh1 and the
input-201-predict-672 of ETTm1, PCDformer achieves 14.3%
(0.566→0.485) and 8.6% (0.491→0.449) MSE reduction re-
spectively. (2) When compared to the most advanced end-
to-end learning model, PCDformer achieves the best per-
formance in all prediction horizon settings except for the
Horizon=720 of Autoformer in ETTh1. Overall, PCDformer

yields a 19.7% (0.390→0.313) averaged MSE reduction and
a 13.3% (0.420→0.364) averaged MAE reduction. Especially,
under the input-201-predict-288 setting for ETTm1, PCD-
former achieves 41.0% (0.634→0.374) MSE reduction and
22.5% (0.528→0.409) MAE reduction.

Since Transformer-based prediction models are more pop-
ular and the model PCDformer is also based on Trans-
former, this paper selects more Transformer-based methods
in recent years for further performance comparison with
this solution. As we can see from Table VI, PCDformer
achieves state-of-the-art performance in most horizon set-
tings of all baselines. Specifically, PCDformer achieves bet-
ter performance overall compared with CLformer on three
real-world datasets (average MSE: 0.371→0.356, average
MAE: 0.350→0.330). Especially, under the input-96-predict-
96 and input-96-predict-192 settings for Weather, PCDformer
achieves 20.3% (0.217→0.173) and 12.0% (0.276→0.243)
MSE reduction respectively compared with FEDformer. We at-
tribute it to that: (1) The proposed parallel processing layer can
extract the temporal dependence of each variable, including
local features and global features. (2) The series decomposition
module can disentangle complex temporal patterns, allowing
the model to learn more predictable parts. Besides, the sparse
self-attention mechanism can capture the correlation between
variables and mitigate the impact of irrelevant information,
enhancing the prediction performance of PCDformer. Fig. 6
presents a comparison of randomly selected sequences and
variates from the Weather dataset. It vividly demonstrates the
exceptional performance of PCDformer in addressing long
sequence prediction problems, surpassing other Transformer-
based models.

D. Parameter sensitivity

To analyze the parameter sensitivity of the model, we
perform experiments on ETTh1 under multivariate settings.
Input length: When predicting a specific horizon, keep hyper-
parameters of the other input lengths consistent with that
of input length 201. In Fig. 7 (a), we can see that when
predicting not too long a sequence (like 24, 48, or 168),
the MSE slowly decreases and then slowly rises as the input
length increases. However, the MSE drops rapidly with longer
inputs in predicting longer sequences (like 336 or 720).
We can conclude that the length of the input sequence is
proportional to the prediction horizon to some extent. That
is, to predict longer future information, we can provide more
historical information to obtain the best results, which is also
in line with our conventional wisdom. Top k: To analyze
the sensitivity of k to the model, we keep the horizon (168)
and other parameters unchanged. In Fig. 7 (b), the general
performance drops a little with the k starting from 1 to 3
and keeps relatively stable at last with the k starting from
5 to 7. Therefore, we can assume that only some variables
have useful relevant information between them, and the rest
of the redundant information will interfere with the model
prediction and weaken the model performance. dmodel: In
this experiment, the horizon is fixed length (168). To show
the influence of different dmodel on a specific input, we only

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2024.3410934

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 22,2024 at 23:48:29 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

TABLE II
UNIVARIATE TIME-SERIES FORECASTING RESULTS ON ETTH1, ETTM1 AND ELECTRICITY.

Methods
Ours Representation Learning Ours End-to-end Forecasting

PCDformer SimTS [17] LaST [14] CoST [13] TS2Vec [15] TNC [16] PCDformer VAE-GRU [11] Autoformer [8] Informer [9] TCN [10]

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

24 0.038 0.150 0.036 0.143 0.030 0.131 0.040 0.152 0.039 0.151 0.057 0.184 0.038 0.150 0.042 0.155 0.057 0.189 0.098 0.247 0.104 0.254
48 0.050 0.171 0.054 0.176 0.051 0.169 0.060 0.186 0.062 0.189 0.094 0.239 0.050 0.171 0.077 0.218 0.070 0.207 0.158 0.319 0.206 0.366

168 0.075 0.208 0.084 0.216 0.078 0.211 0.097 0.236 0.142 0.291 0.171 0.329 0.075 0.208 0.172 0.344 0.108 0.260 0.183 0.346 0.462 0.586
336 0.084 0.222 0.100 0.239 0.100 0.246 0.112 0.258 0.160 0.316 0.179 0.345 0.084 0.222 0.140 0.301 0.119 0.281 0.222 0.387 0.422 0.564
720 0.105 0.254 0.126 0.277 0.138 0.298 0.148 0.306 0.179 0.345 0.235 0.408 0.105 0.254 0.204 0.381 0.109 0.264 0.269 0.435 0.438 0.578

E
T

T
m

1

24 0.013 0.086 0.013 0.084 0.011 0.077 0.015 0.088 0.016 0.093 0.019 0.103 0.013 0.086 0.013 0.082 0.022 0.115 0.030 0.137 0.027 0.127
48 0.021 0.111 0.024 0.112 0.021 0.108 0.025 0.117 0.028 0.126 0.045 0.162 0.021 0.111 0.026 0.120 0.032 0.138 0.069 0.203 0.040 0.154
96 0.032 0.138 0.041 0.143 0.033 0.134 0.038 0.147 0.045 0.162 0.054 0.178 0.032 0.138 0.046 0.164 0.045 0.168 0.194 0.372 0.097 0.246

288 0.065 0.193 0.098 0.207 0.069 0.197 0.077 0.209 0.095 0.235 0.142 0.290 0.065 0.193 0.127 0.294 0.071 0.207 0.401 0.554 0.305 0.455
672 0.082 0.216 0.117 0.242 0.100 0.239 0.113 0.257 0.142 0.290 0.136 0.290 0.082 0.216 0.217 0.399 0.102 0.254 0.512 0.644 0.445 0.576

E
le

ct
ri

ci
ty

24 0.149 0.285 – – 0.151 0.277 0.243 0.264 0.260 0.288 0.252 0.278 0.149 0.285 0.330 0.406 0.290 0.411 0.251 0.275 0.243 0.367
48 0.184 0.314 – – 0.186 0.307 0.292 0.300 0.313 0.321 0.300 0.308 0.184 0.314 0.437 0.481 0.310 0.408 0.346 0.339 0.283 0.397

168 0.250 0.358 – – 0.243 0.346 0.405 0.375 0.429 0.392 0.412 0.384 0.250 0.358 0.433 0.476 0.435 0.490 0.544 0.424 0.357 0.449
336 0.286 0.389 – – 0.286 0.379 0.560 0.473 0.565 0.478 0.548 0.466 0.286 0.389 0.472 0.504 0.646 0.606 0.713 0.512 0.355 0.446
720 0.320 0.427 – – 0.322 0.422 0.889 0.645 0.863 0.651 0.859 0.651 0.320 0.427 0.543 0.563 0.609 0.587 1.182 0.806 0.387 0.477

Avg. 0.117 0.235 N/A N/A 0.121 0.236 0.208 0.268 0.222 0.289 0.234 0.328 0.117 0.235 0.219 0.326 0.201 0.306 0.345 0.400 0.278 0.403

1 The best results are represented in bold font, and the second-best results are represented with an underline. The other models’ results can refer to [14], [17].
2 - denotes that the methods are not implemented on this dataset. N/A indicates that the average is not available because of the existence of missing values.

TABLE III
THE HYPER-PARAMETERS OF PCDFORMER ON ETTH1, ETTM1 AND ELECTRICITY DATASETS FOR UNIVARIATE TIME-SERIES FORECASTING.

Model configurations ETTh1 ETTm1 Electricity

Hyper-parameter

Horizon 24 48 168 336 720 24 48 96 288 672 24 48 168 336 720
Look-back window 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201

Batch size 32 32 32 32 32 32 32 32 32 256 64 128 128 256 256
Learning rate 8e-5 8e-5 2.5e-5 2.5e-5 2.5e-5 5e-5 5e-5 8e-5 8e-5 5e-5 1.2e-4 1.5e-4 8e-5 5.5e-5 8e-5
dmodel 256 256 512 512 1024 256 256 256 256 512 256 256 512 1024 1024
Dropout 0.4 0.4 0.5 0.5 0.5 0.2 0.45 0.55 0.55 0.6 0.12 0.15 0.15 0.005 0.01

Kernel size 65 65 45 45 45 65 45 45 45 45 45 45 45 45 45

TABLE IV
MULTIVARIATE TIME-SERIES FORECASTING RESULTS ON ETTH1, ETTM1 AND ELECTRICITY.

Methods
Ours Representation Learning Ours End-to-end Forecasting

PCDformer SimTS LaST ACST [37] CoST TS2Vec TNC PCDformer VAE-GRU Autoformer Informer TCN

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

24 0.322 0.376 0.377 0.422 0.324 0.368 0.440 0.454 0.386 0.429 0.590 0.531 0.708 0.592 0.322 0.376 0.529 0.534 0.384 0.428 0.577 0.549 0.583 0.547
48 0.357 0.399 0.427 0.454 0.351 0.380 0.468 0.470 0.437 0.464 0.624 0.555 0.749 0.619 0.357 0.399 0.612 0.593 0.392 0.419 0.685 0.625 0.670 0.606

168 0.444 0.450 0.638 0.577 0.468 0.453 0.535 0.511 0.643 0.582 0.762 0.639 0.884 0.699 0.444 0.450 0.758 0.647 0.490 0.481 0.931 0.752 0.811 0.680
336 0.485 0.475 0.815 0.685 0.566 0.512 0.594 0.552 0.812 0.679 0.931 0.728 1.020 0.768 0.485 0.475 0.844 0.692 0.505 0.484 1.128 0.873 1.132 0.815
720 0.680 0.610 0.956 0.771 0.740 0.650 0.682 0.622 0.970 0.771 1.063 0.799 1.157 0.830 0.680 0.610 1.045 0.816 0.498 0.500 1.215 0.896 1.165 0.813

E
T

T
m

1

24 0.200 0.286 0.232 0.314 0.218 0.289 0.381 0.406 0.246 0.329 0.453 0.444 0.522 0.472 0.200 0.286 0.509 0.452 0.383 0.403 0.453 0.444 0.522 0.472
48 0.264 0.331 0.311 0.368 0.280 0.329 0.476 0.470 0.331 0.386 0.592 0.521 0.695 0.567 0.264 0.331 0.642 0.543 0.454 0.453 0.494 0.503 0.542 0.508
96 0.296 0.357 0.360 0.402 0.323 0.360 0.511 0.497 0.378 0.419 0.635 0.554 0.731 0.595 0.296 0.357 0.600 0.540 0.481 0.463 0.678 0.614 0.666 0.578

288 0.374 0.409 0.450 0.467 0.392 0.403 0.528 0.506 0.472 0.486 0.693 0.597 0.818 0.649 0.374 0.409 0.769 0.678 0.634 0.528 1.056 0.786 0.991 0.735
672 0.449 0.457 0.612 0.563 0.491 0.466 0.565 0.529 0.620 0.574 0.782 0.653 0.932 0.712 0.449 0.457 0.799 0.673 0.606 0.542 1.192 0.926 1.032 0.756

E
le

ct
ri

ci
ty

24 0.107 0.207 – – 0.125 0.222 – – 0.136 0.242 0.287 0.375 0.354 0.423 0.107 0.207 0.190 0.250 0.165 0.286 0.312 0.387 0.235 0.346
48 0.124 0.225 – – 0.146 0.245 – – 0.153 0.258 0.309 0.391 0.376 0.438 0.124 0.225 0.228 0.280 0.178 0.295 0.392 0.431 0.253 0.359

168 0.165 0.265 – – 0.170 0.265 – – 0.175 0.275 0.335 0.410 0.402 0.456 0.165 0.265 0.240 0.297 0.215 0.327 0.515 0.509 0.278 0.372
336 0.191 0.287 – – 0.188 0.280 – – 0.196 0.296 0.351 0.422 0.417 0.466 0.191 0.287 0.262 0.318 0.218 0.329 0.759 0.625 0.287 0.382
720 0.230 0.322 – – 0.223 0.309 – – 0.232 0.327 0.378 0.440 0.442 0.483 0.230 0.322 0.296 0.347 0.252 0.356 0.969 0.788 0.287 0.381

Avg. 0.313 0.364 N/A N/A 0.334 0.369 N/A N/A 0.412 0.434 0.586 0.537 0.680 0.585 0.313 0.364 0.555 0.511 0.390 0.420 0.757 0.647 0.630 0.557

change the value of dmodel, keeping other hyper-parameters
the same as Table V. In Fig. 7 (c), when the input length
keeps unchanged and the value of the dmodel increases to a
certain extent, PCDformer can obtain the optimal performance.
However, too large a dmodel will also make the performance
worse, which may be caused by overfitting. In practice, we
will adaptively adjust the value of dmodel according to the
length of the input sequence, shown in Table III & V & VII,
so that the performance of the model can be optimal.

E. Ablation study

The performance of parallel processing layer: In this
experiment, we testify to the performance of the parallel
processing layer for extracting the temporal dependencies. To
better illustrate the influence of the parallel processing layer
on the model, we remain other settings unchanged and just
remove the parallel processing layer from PCDformer. As we

can see from Table VIII, the performance of PCDformer† is
inferior to PCDformer. It proves the parallel processing layer’s
ability to capture the temporal dependencies of time steps,
which enhances the model’s performance of prediction.

The performance of the sparse self-attention: In this
study, we substitute the canonical self-attention for the sparse
self-attention, while the other experimental settings are aligned
with that of multivariate time series forecasting. From Ta-
ble VIII, we can learn that except for Horizon=720 on
ETTh1, PCDformer achieves better performance compared
with PCDformer‡ when forecasting various time steps. The
reason we think is that although there may be correlations
between the input sequences of different variables, there is
also a large amount of useless information, which will interfere
with the training and inference of the model, and eventually
reduce the accuracy of the model’s prediction. However, unlike
self-attention, which considers the correlation between all

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2024.3410934

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 22,2024 at 23:48:29 UTC from IEEE Xplore. Restrictions apply.

MA et al.: MULTIVARIATE TIME SERIES MODELING AND FORECASTING 9

TABLE V
THE HYPER-PARAMETERS OF PCDFORMER ON ETTH1, ETTM1 AND ELECTRICITY DATASETS FOR MULTIVARIATE TIME-SERIES FORECASTING.

Model configurations ETTh1 ETTm1 Electricity

Hyper-parameter

Horizon 24 48 168 336 720 24 48 96 288 672 24 48 168 336 720
Look-back window 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201

Batch size 16 32 32 32 64 16 32 32 64 64 16 16 32 32 32
Learning rate 8e-5 1.5e-4 1.5e-4 1.5e-4 1.5e-5 1e-4 5e-5 5e-5 5e-5 1e-4 1.5e-4 1.5e-4 1.5e-4 2.5e-4 5e-4
dmodel 256 256 512 512 1024 256 256 256 512 1024 256 256 512 512 512
Dropout 0.05 0.45 0.5 0.5 0.5 0.05 0.2 0.25 0.25 0.25 0.05 0.05 0.05 0.02 0.05

Kernel size 25 45 45 45 45 45 45 45 45 45 45 45 45 45 45
Top k 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1

TABLE VI
LONG-TERM FORECASTING PERFORMANCE COMPARISON WITH TRANSFORMER-BASED MODELS ON ELECTRICITY, TRAFFIC AND WEATHER.

Model PCDformer CLformer [12] FEDformer [21] Autoformer [8] Pyraformer [20] Informer [9] Transformer [36] LogTrans [19] Reformer [18]
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.160 0.259 0.191 0.308 0.193 0.308 0.201 0.317 0.386 0.449 0.274 0.368 0.263 0.359 0.258 0.357 0.312 0.402
192 0.178 0.276 0.200 0.314 0.201 0.315 0.222 0.334 0.378 0.443 0.296 0.296 0.273 0.374 0.266 0.368 0.348 0.433
336 0.204 0.298 0.204 0.319 0.214 0.329 0.231 0.338 0.376 0.443 0.300 0.394 0.277 0.373 0.280 0.380 0.350 0.433Electricity

720 0.246 0.338 0.224 0.335 0.246 0.355 0.254 0.361 0.376 0.445 0.373 0.439 0.290 0.378 0.283 0.376 0.340 0.420
96 0.577 0.350 0.581 0.363 0.587 0.366 0.613 0.388 0.867 0.468 0.719 0.391 0.638 0.354 0.684 0.384 0.732 0.423

192 0.563 0.335 0.589 0.361 0.604 0.373 0.616 0.382 0.869 0.467 0.696 0.379 0.647 0.354 0.685 0.390 0.733 0.420
336 0.575 0.345 0.603 0.368 0.621 0.383 0.622 0.337 0.881 0.469 0.777 0.420 0.669 0.364 0.733 0.408 0.742 0.420Traffic

720 0.606 0.364 0.613 0.367 0.626 0.382 0.660 0.408 0.896 0.473 0.864 0.472 0.707 0.386 0.717 0.396 0.755 0.423
96 0.173 0.243 0.218 0.298 0.217 0.296 0.266 0.336 – – 0.300 0.384 0.656* 0.576* 0.458 0.490 0.689 0.596

192 0.243 0.308 0.288 0.356 0.276 0.336 0.307 0.367 – – 0.598 0.544 1.139* 0.765* 0.658 0.589 0.752 0.638
336 0.328 0.373 0.339 0.391 0.339 0.380 0.359 0.395 – – 0.578 0.523 1.411* 0.858* 0.797 0.652 0.639 0.596Weather

720 0.440 0.476 0.406 0.424 0.403 0.428 0.419 0.428 – – 1.059 0.741 1.931* 1.035* 0.869 0.675 1.130 0.792
1 ∗ denotes re-implementation. − denotes that the methods are not implemented on this dataset. The other models’ results can refer to [8], [12], [21], [40].
2 The experimental setting is the same as the Autoformer, using the input length of 96 to predict various future horizons{96, 192, 336, 720}.

TABLE VII
THE HYPER-PARAMETERS OF PCDFORMER ON ELECTRICITY, TRAFFIC AND WEATHER DATASETS FOR MULTIVARIATE TIME-SERIES FORECASTING.

Model configurations Electricity Traffic Weather

Hyperparameter

Horizon 96 192 336 720 96 192 336 720 96 192 336 720
Look-back window 96

Batch size 32 32 16 32 16 16 16 16 32 32 64 256
Learning rate 1.5e-4 2.5e-4 1e-4 1e-4 2e-4 2e-4 2.5e-4 3e-4 1e-4 5e-5 5e-5 9e-6
dmodel 512 512 1024 1024 256 512 512 512 256 256 512 512
Dropout 0.05 0.04 0.02 0.02 0.2 0.2 0.25 0.3 0.05 0.05 0.025 0.01

Kernel size 45 45 45 45 25 25 25 25 25 25 25 25
Top k 1 1 1 1 1 1 1 1 1 1 1 1

variables, sparse self-attention only considers the parts of the
variables that are strongly correlated, eliminating the negative
impact of redundant information.

The performance of the decomposition module: In this
test, we use PCDformer§ to demonstrate the effectiveness of
the strategy of series decomposition. In the overall results
of Table VIII, we can see that the general prediction per-
formance of PCDformer§ is worse than PCDformer except
for Horizon=720 on ETTh1. We can conclude that the series
decomposition beneficial to the enhancement of the model’s
prediction accuracy is worth adopting.

F. Complexity analysis and direction of improvement

Based on the analysis conducted in Section IV-A, we
can know that the complexity of PCDformer is O(n2 ∗ d),
where n represents the total number of input variables, and
d represents the dmodel. Unlike other models that have com-
plexity dependent on the length of the input sequence [8],
[9], [18], the complexity of our model primarily depends on
the total number of input variables. Therefore, our model can
demonstrate a significant improvement in complexity when
dealing with a smaller number of input variables, especially for
long series. However, when the total number of input variables
is substantial, our model becomes relatively more complex
to handle. The main reason is that the sparse self-attention

TABLE VIII
ABLATION STUDY ON ETTH1 AND ETTM1 DATASETS UNDER

MULTIVARIATE SETTINGS. KEEP ALL HYPER-PARAMETERS THE SAME AS
TABLE V.

Dataset ETTh1 ETTm1

Look-back window 201 201

Horizon 24 48 168 336 720 24 48 96 288 672

PCDformer
MSE 0.322 0.357 0.444 0.485 0.680 0.200 0.264 0.296 0.374 0.449
MAE 0.376 0.399 0.450 0.475 0.610 0.286 0.331 0.357 0.409 0.457

PCDformer†
MSE 0.349 0.386 0.493 0.510 0.693 0.205 0.297 0.319 0.405 0.490
MAE 0.403 0.425 0.484 0.496 0.613 0.291 0.357 0.374 0.434 0.482

PCDformer‡
MSE 0.330 0.363 0.448 0.493 0.671 0.216 0.270 0.306 0.385 0.523
MAE 0.382 0.405 0.455 0.481 0.605 0.294 0.339 0.365 0.417 0.512

PCDformer§
MSE 0.334 0.414 0.473 0.541 0.641 0.218 0.278 0.315 0.398 0.480
MAE 0.386 0.457 0.470 0.509 0.592 0.295 0.347 0.373 0.425 0.477

1 PCDformer† removes the parallel processing layer from PCDformer.
2 PCDformer‡ applies the canonical self-attention mechanism.
3 PCDformer§ removes the series decomposition and trend module from PCDformer.

mechanism considers attention magnitudes between each vari-
able and all others when computing Q and K. While this
effectively captures attention relationships, it also increases
computational workload. Hence, exploring feasible algorithms
to enhance sparse self-attention is a potential improvement
direction.

Moreover, from Fig. 6, we can find that the curve is not
highly smooth although PCDformer can learn the overall

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2024.3410934

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 22,2024 at 23:48:29 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

(a) Sequence 501, Variate 1 (b) Sequence 1001, Variate 6

(c) Sequence 2001, Variate 12 (d) Sequence 2501, Variate 18

Fig. 6. The prediction results (Horizon = 96) of PCDformer, FEDformer, Autoformer, Informer, and Transformer on randomly selected sequences and variates
from the Weather dataset.

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

48 96 168 201 240 336 480

K = 1 K = 3 K = 5 K = 7

Encoder Input Length

M
SE

 L
os

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

48 96 168 201 240 336 480 624 720

H = 24 H = 48 H = 168 H = 336 H = 720

M
SE

 L
os

s

Encoder Input Length

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

64 128 256 512 1024

I = 48 I = 96 I = 168 I = 201 I = 240

value

M
SE

 L
os

s

(a) Input length. The legend denotes the length of prediction. (b) Top . The legend denotes the value of . k

d elmod

(c) Representation dimension. The legend denotes the length of input.k

Fig. 7. The results of the parameter sensitivity.

trend well. We think the reason is the existence of noise in
the original series. Therefore, another improvement direction
based on this paper is to eliminate unpredictable noise signals
in the original sequence. A feasible solution to this problem is
to convert the seasonal terms in the time domain into signals
in the frequency domain through the Fourier transform so that
the noise signal can be filtered out through the gate function.

Finally, we can consider replacing M-inception with multi-
scale dilated convolutions [41] to reduce the introduction of
additional parameters.

VI. CONCLUSION

To address challenges related to information coupling, the
entanglement of temporal patterns, and the impact of irrelevant
information between variables in LSTF tasks, we propose
PCDformer, which incorporates a parallel processing layer,
sparse self-attention mechanism, and series decomposition.
By parallelizing and decomposing the input sequence, PCD-
former effectively uncouples variables and disentangles dif-
ferent temporal patterns. A sparse self-attention mechanism
is deployed to eliminate the irrelevant information between

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2024.3410934

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 22,2024 at 23:48:29 UTC from IEEE Xplore. Restrictions apply.

MA et al.: MULTIVARIATE TIME SERIES MODELING AND FORECASTING 11

variables and make the model pay more attention to the
useful information. Extensive experiments on diverse real-
world datasets are conducted to show the superior performance
of PCDformer compared to state-of-the-art methods in solving
LSTF problems.

REFERENCES

[1] F. Liu, Q. Tao, D. Yang, and D. Sidorov, “Bidirectional Gated Recurrent
Unit-Based Lower Upper Bound Estimation Method for Wind Power
Interval Prediction,” IEEE Transactions on Artificial Intelligence, vol. 3,
no. 3, pp. 461–469, 2022.

[2] G. Li, A. Zhang, Q. Zhang, D. Wu, and C. Zhan, “Pearson Correlation
Coefficient-Based Performance Enhancement of Broad Learning System
for Stock Price Prediction,” IEEE Transactions on Circuits and Systems
II: Express Briefs, vol. 69, no. 5, pp. 2413–2417, 2022.

[3] P. S. Mung and S. Phyu, “Time Series Weather Data Forecasting Using
Deep Learning,” in ICCA, 2023, pp. 254–259.

[4] H. Jiang, S. Zhang, W. Yang, X. Peng, and W. Zhong, “Integration
of Encoding and Temporal Forecasting: Toward End-to-End NO x

Prediction for Industrial Chemical Process,” IEEE Transactions on
Neural Networks and Learning Systems, pp. 1–13, 2023.

[5] W. Liao, Z. Yang, X. Chen, and Y. Li, “WindGMMN: Scenario Fore-
casting for Wind Power Using Generative Moment Matching Networks,”
IEEE Transactions on Artificial Intelligence, vol. 3, no. 5, pp. 843–850,
2022.

[6] D. Liu, Y. L. Wu, X. Li, and L. Qi, “Medi-Care AI: Predicting
medications from billing codes via robust recurrent neural networks,”
Neural Networks, vol. 124, pp. 109–116, 2020.

[7] S. Ma, T. Zhang, Y.-B. Zhao, Y. Kang, and P. Bai, “TCLN: A
Transformer-based Conv-LSTM network for multivariate time series
forecasting,” Applied Intelligence, pp. 1–17, 2023.

[8] H. Wu, J. Xu, J. Wang, and M. Long, “Autoformer: Decomposition
Transformers with Auto-Correlation for Long-Term Series Forecasting,”
in NeurIPS, 2021, pp. 22 419–22 430.

[9] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang,
“Informer: Beyond Efficient Transformer for Long Sequence Time-
Series Forecasting,” in AAAI, 2021, pp. 11 106–11 115.

[10] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” arXiv
preprint arXiv:1803.01271, 2018.

[11] O. Fabius, J. R. van Amersfoort, and D. P. Kingma, “Variational
Recurrent Auto-Encoders,” in ICLR, 2015.

[12] X. Wang, H. Liu, J. Du, Z. Yang, and X. Dong, “CLformer: Locally
grouped auto-correlation and convolutional transformer for long-term
multivariate time series forecasting,” Engineering Applications of Arti-
ficial Intelligence, vol. 121, p. 106042, 2023.

[13] G. Woo, C. Liu, D. Sahoo, A. Kumar, and S. C. H. Hoi, “CoST:
Contrastive Learning of Disentangled Seasonal-Trend Representations
for Time Series Forecasting,” in ICLR, 2022.

[14] Z. Wang, X. Xu, W. Zhang, G. Trajcevski, T. Zhong, and F. Zhou,
“Learning Latent Seasonal-Trend Representations for Time Series Fore-
casting,” in NeurIPS, 2022.

[15] Z. Yue, Y. Wang, J. Duan, T. Yang, C. Huang, Y. Tong, and B. Xu,
“TS2Vec: Towards Universal Representation of Time Series,” in AAAI,
2022, pp. 8980–8987.

[16] S. Tonekaboni, D. Eytan, and A. Goldenberg, “Unsupervised Represen-
tation Learning for Time Series with Temporal Neighborhood Coding,”
in ICLR, 2021.

[17] X. Zheng, X. Chen, M. Schürch, A. Mollaysa, A. Allam, and
M. Krauthammer, “SimTS: Rethinking Contrastive Representation
Learning for Time Series Forecasting,” arXiv preprint arXiv:2303.18205,
2023.

[18] N. Kitaev, L. Kaiser, and A. Levskaya, “Reformer: The Efficient
Transformer,” in ICLR, 2020.

[19] S. Li, X. Jin, Y. Xuan, X. Zhou, W. Chen, Y.-X. Wang, and X. Yan,
“Enhancing the Locality and Breaking the Memory Bottleneck of
Transformer on Time Series Forecasting,” in NeurIPS, vol. 32, 2019.

[20] S. Liu, H. Yu, C. Liao, J. Li, W. Lin, A. X. Liu, and S. Dustdar,
“Pyraformer: Low-Complexity Pyramidal Attention for Long-Range
Time Series Modeling and Forecasting,” in ICLR, 2022.

[21] T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, and R. Jin, “FEDformer:
Frequency Enhanced Decomposed Transformer for Long-term Series
Forecasting,” in ICML, 2022, pp. 27 268–27 286.

[22] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning,
“STL: A Seasonal-Trend Decomposition Procedure Based on Loess,” J.
Off. Stat, vol. 6, no. 1, pp. 3–73, 1990.

[23] X. Wang, H. Zhang, Y. Zhang, M. Wang, J. Song, T. Lai, and M. Khushi,
“Learning Nonstationary Time-Series With Dynamic Pattern Extrac-
tions,” IEEE Transactions on Artificial Intelligence, vol. 3, no. 5, pp.
778–787, 2022.

[24] S. Tonekaboni, C. Li, S. Ö. Arik, A. Goldenberg, and T. Pfister,
“Decoupling Local and Global Representations of Time Series,” in
AISTATS, vol. 151, 2022, pp. 8700–8714.

[25] Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao, “Time series
classification using multi-channels deep convolutional neural networks,”
in WAIM, 2014, pp. 298–310.

[26] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in CVPR, 2015, pp. 1–9.

[27] Y. Yang and J. Lu, “Foreformer: an enhanced transformer-based frame-
work for multivariate time series forecasting,” Applied Intelligence,
vol. 53, no. 10, pp. 12 521–12 540, 2023.

[28] F. Li, Z. Wan, T. Koch, G. Zan, M. Li, Z. Zheng, and B. Liang,
“Improving the accuracy of multi-step prediction of building energy
consumption based on EEMD-PSO-Informer and long-time series,”
Computers and Electrical Engineering, vol. 110, p. 108845, 2023.

[29] H. Gao, H. Su, Y. Cai, R. Wu, Z. Hao, Y. Xu, W. Wu, J. Wang,
Z. Li, and Z. Kan, “Trajectory prediction of cyclist based on dynamic
Bayesian network and long short-term memory model at unsignalized
intersections,” Science China Information Sciences, vol. 64, no. 7, p.
172207, 2021.

[30] X. Zou, S. Zhang, C. Zhang, J. J. Q. Yu, and E. Chung, “Long-Term
Origin-Destination Demand Prediction With Graph Deep Learning,”
IEEE Transactions on Big Data, vol. 8, no. 6, pp. 1481–1495, 2022.

[31] L. Laurenti, E. Tinti, F. Galasso, L. Franco, and C. Marone, “Deep learn-
ing for laboratory earthquake prediction and autoregressive forecasting
of fault zone stress,” Earth and Planetary Science Letters, vol. 598, p.
117825, 2022.

[32] C. J. Lynch and R. Gore, “Application of one-, three-, and seven-day
forecasts during early onset on the COVID-19 epidemic dataset using
moving average, autoregressive, autoregressive moving average, autore-
gressive integrated moving average, and naı̈ve forecasting methods,”
Data in Brief, vol. 35, p. 106759, 2021.

[33] D. Liu, L. Y. Wu, B. Li, F. Boussaid, M. Bennamoun, X. Xie, and
C. Liang, “Jacobian norm with Selective Input Gradient Regularization
for interpretable adversarial defense,” Pattern Recognition, vol. 145, p.
109902, 2024.

[34] K. E. ArunKumar, D. V. Kalaga, C. M. S. Kumar, M. Kawaji, and T. M.
Brenza, “Forecasting of COVID-19 using deep layer recurrent neural
networks (RNNs) with gated recurrent units (GRUs) and long short-
term memory (LSTM) cells,” Chaos, Solitons & Fractals, vol. 146, p.
110861, 2021.

[35] D. Huang, Y. Fu, N. Qin, and S. Gao, “Fault diagnosis of high-speed
train bogie based on LSTM neural network,” Sci. Chin. Inf. Sci, vol. 64,
pp. 1–3, 2021.

[36] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is All you Need,” in NeurIPS,
vol. 30, 2017.

[37] J. Hu, Z. Hu, T. Li, and S. Du, “A contrastive learning based universal
representation for time series forecasting,” Information Sciences, vol.
635, pp. 86–98, 2023.

[38] S. Liu, H. Ji, and M. C. Wang, “Nonpooling Convolutional Neural
Network Forecasting for Seasonal Time Series With Trends,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 31, no. 8,
pp. 2879–2888, 2020.

[39] G. Lai, W. Chang, Y. Yang, and H. Liu, “Modeling Long- and Short-
Term Temporal Patterns with Deep Neural Networks,” in SIGIR, 2018,
pp. 95–104.

[40] M. LIU, A. Zeng, M. Chen, Z. Xu, Q. LAI, L. Ma, and Q. Xu, “SCINet:
Time Series Modeling and Forecasting with Sample Convolution and
Interaction,” in NeurIPS, vol. 35, 2022, pp. 5816–5828.

[41] Y. L. Wu, D. Liu, X. Guo, R. Hong, L. Liu, and R. Zhang, “Multi-
scale Spatial Representation Learning via Recursive Hermite Polynomial
Networks.” in IJCAI, 2022, pp. 1465–1473.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2024.3410934

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 22,2024 at 23:48:29 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Related Work
	Preliminary
	Methodology
	The descriptions of the input and output
	Parallel processing layer
	Series decomposition
	Sparse self-attention
	Encoder-Decoder and trend module

	Experiments
	Datasets and baselines
	Experimental details
	Results and analyses
	Parameter sensitivity
	Ablation study
	Complexity analysis and direction of improvement

	Conclusion
	References

